首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1542篇
  免费   154篇
  国内免费   2篇
  2023年   12篇
  2022年   8篇
  2021年   66篇
  2020年   31篇
  2019年   35篇
  2018年   50篇
  2017年   44篇
  2016年   59篇
  2015年   97篇
  2014年   105篇
  2013年   114篇
  2012年   153篇
  2011年   143篇
  2010年   91篇
  2009年   76篇
  2008年   83篇
  2007年   83篇
  2006年   72篇
  2005年   69篇
  2004年   52篇
  2003年   39篇
  2002年   44篇
  2001年   7篇
  1999年   5篇
  1998年   13篇
  1997年   9篇
  1994年   5篇
  1993年   3篇
  1992年   7篇
  1989年   3篇
  1988年   5篇
  1987年   6篇
  1984年   5篇
  1982年   8篇
  1981年   3篇
  1980年   4篇
  1979年   5篇
  1978年   5篇
  1977年   3篇
  1976年   6篇
  1974年   3篇
  1973年   5篇
  1972年   3篇
  1965年   3篇
  1964年   5篇
  1961年   4篇
  1960年   6篇
  1930年   2篇
  1902年   2篇
  1899年   2篇
排序方式: 共有1698条查询结果,搜索用时 15 毫秒
81.
82.

Objective

To further our understanding of the association between self-reported childhood learning disabilities (LDs) and atypical dementia phenotypes (Atypical Dementia), including logopenic primary progressive aphasia (L-PPA), Posterior Cortical Atrophy (PCA), and Dysexecutive-type Alzheimer’s Disease (AD).

Methods

This retrospective case series analysis of 678 comprehensive neuropsychological assessments compared rates of self-reported LD between dementia patients diagnosed with Typical AD and those diagnosed with Atypical Dementia. 105 cases with neuroimaging or CSF data available and at least one neurology follow-up were identified as having been diagnosed by the neuropsychologist with any form of neurodegenerative dementia. These cases were subject to a consensus diagnostic process among three dementia experts using validated clinical criteria for AD and PPA. LD was considered Probable if two or more statements consistent with prior LD were documented within the Social & Developmental History of the initial neuropsychological evaluation.

Results

85 subjects (Typical AD n=68, Atypical AD n=17) were included in the final analysis. In logistic regression models adjusted for age, gender, handedness, education and symptom duration, patients with Probable LD, compared to patients without Probable LD, were significantly more likely to be diagnosed with Atypical Dementia vs. Typical AD (OR 13.1, 95% CI 1.3-128.4). All three of the L-PPA cases reporting a childhood LD endorsed childhood difficulty with language. By contrast, both PCA cases reporting Probable childhood LD endorsed difficulty with attention and/or math.

Conclusions

In people who develop dementia, childhood LD may predispose to atypical phenotypes. Future studies are required to confirm whether atypical neurodevelopment predisposes to regional-specific neuropathology in AD and other dementias.  相似文献   
83.
84.
An important aim of teaching philosophy in Dutch secondary schools is to learn about philosophy (i.e., the great philosophers) by doing philosophy. We examined doing philosophy and focused specifically on the relationship between student learning activities and teacher behavior; in doing so, a qualitative cross-case analysis of eight philosophy lessons was performed. The effectiveness of doing philosophy was operationalized into five learning activities comprising rationalizing, analyzing, testing, producing criticism, and reflecting, and scored by means of qualitative graphical time registration. Using CA we find a quantitative one-dimensional scale for the lessons that contrasts lessons that are more and less effective in terms of learning and teaching. A relationship was found between teaching by teachers and doing philosophy by students. In particular we found students to produce a higher level of doing philosophy with teachers who chose to organize a philosophical discussion with shared guidance by the teacher together with the students.  相似文献   
85.
Here, we study the homodimerization of the transmembrane domain of Neu, as well as an oncogenic mutant (V664E), in vesicles derived from the plasma membrane of mammalian cells. For the characterization, we use a Förster resonance energy transfer (FRET)-based method termed Quantitative Imaging-FRET (QI-FRET), which yields the donor and acceptor concentrations in addition to the FRET efficiencies in individual plasma membrane-derived vesicles. Our results demonstrate that both the wild-type and the mutant are 100% dimeric, suggesting that the Neu TM helix dimerizes more efficiently than other RTK TM domains in mammalian membranes. Furthermore, the data suggest that the V664E mutation causes a very small, but statistically significant change in dimer structure. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.  相似文献   
86.
Lipid-mimetic metallosurfactant based luminophores are promising candidates for labeling phospholipid membranes without altering their biophysical characteristics. The metallosurfactants studied exhibit high structural and physicochemical similarity to phospholipid molecules, designed to incorporate into the membrane structure without the need for covalent attachment to a lipid molecule. In this work, two lipid-mimetic phosphorescent metal complexes are described: [Ru(bpy)2(dn-bpy)]2 + and [Ir(ppy)2(dn-bpy)]+ where bpy is 2,2′-bipyridine, dn-bpy is 4,4′-dinonyl-2,2′-bipyridine and ppy is 2-phenylpyridine. Apart from being lipid-mimetic in size, shape and physical properties, both complexes exhibit intense photoluminescence and enhanced photostability compared with conventional organic fluorophores, allowing for prolonged observation. Moreover, the large Stokes shift and long luminescence lifetime associated with these complexes make them more suitable for spectroscopic studies. The complexes are easily incorporated into dimyristoil-phosphatidyl-choline (DMPC) liposomes by mixing in the organic solvent phase. DLS reveals the labeled membranes form liposomes of similar size to that of neat DMPC membrane. Synchrotron Small-Angle X-ray Scattering (SAXS) measurements confirmed that up to 5% of either complex could be incorporated into DMPC membranes without producing any structural changes in the membrane. Fluorescence microscopy reveals that 0.5% label content is sufficient for imaging. Atomic Force Microscopic imaging confirms that liposomes of the labeled bilayers on a mica surface can fuse into a flat lamellar membrane that is morphologically identical to neat lipid membranes. These results demonstrate the potential of such lipid-mimetic luminescent metal complexes as a new class of labels for imaging lipid membranes.  相似文献   
87.
It has long been presumed that activation of the apoptosis-initiating Death Receptor 5, as well as other structurally homologous members of the TNF-receptor superfamily, relies on ligand-stabilized trimerization of noninteracting receptor monomers. We and others have proposed an alternate model in which the TNF-receptor dimer—sitting at the vertices of a large supramolecular receptor network of ligand-bound receptor trimers—undergoes a closed-to-open transition, propagated through a scissorslike conformational change in a tightly bundled transmembrane (TM) domain dimer. Here we have combined electron paramagnetic resonance spectroscopy and potential-of-mean force calculations on the isolated TM domain of the long isoform of DR5. The experiments and calculations both independently validate that the opening transition is intrinsic to the physical character of the TM domain dimer, with a significant energy barrier separating the open and closed states.Death receptor 5 (DR5) is a member of the tumor necrosis factor receptor (TNFR) superfamily that mediates apoptosis when bound by its cognate ligand, TNF-related apoptosis-inducing ligand (1). Upregulated in cancer cells, DR5 is among the most actively pursued anticancer targets (2). TNF-related apoptosis-inducing ligand binds to preassembled DR5 trimers at their extracellular domains, causing the formation of oligomeric ligand-receptor networks that are held together by receptor dimers (3). In the long-isoform of DR5, this dimer is crosslinked via ligand-induced disulfide bond formation between two transmembrane (TM) domain α-helices at Cys-209, and is further stabilized by a GxxxG motif one helix-turn downstream (3).Our recent study of the structurally homologous TNFR1 showed that receptor activation involves a conformational change that propagates from the extracellular domain to the cytosolic domain through a separation (or opening) of the TM domains of the dimer (4). We have therefore hypothesized that the activation of DR5, and indeed all structurally homologous TNF-receptors, involves a scissorslike opening of the TM domain dimer (Fig. 1).Open in a separate windowFigure 1Activation model of the DR5-L TM dimer. The sequence and positions of the disulfide bond and TOAC spin label (top), along with our previously published model (bottom, left) are shown. We propose an activation model (bottom, right) in which the transmembrane dimer pivots at its disulfide bond to reach an active open conformation.Using electron paramagnetic resonance (EPR) spectroscopy, a technique that has been used previously to study TM helix architecture and dynamics (5,6), and potential-of-mean force (PMF) calculations (7,8), this study addresses the question of whether the isolated disulfide-linked DR5-L TM domain dimer occupies distinct open and closed states (Fig. 1), and how its dynamic behavior contributes to the free-energy landscape of the opening transition of the full-length receptor.The DR5-L TM domain was synthesized with TOAC, an amino acid with a nitroxide spin label rigidly fixed to the α-carbon (9), incorporated at position 32 (Fig. 1), with some minor modification to facilitate EPR measurements. Previous work confirmed that this peptide forms disulfide-linked dimers (e.g., via comparison to 2-ME treated sample) and a negligible population of higher-order oligomers (further supported by model fitting of the EPR data below). For peptide work, residues were renumbered such that Thr-204 corresponds to Thr-1, and so on. The cytosolic Cys-29 (which we previously showed does not participate in a disulfide bond in cells) was replaced with serine to prevent the formation of antiparallel disulfide-linked dimers, and Trp-34 was replaced with tyrosine to prevent intrinsic fluorescence in fluorescence studies (not published). Continuous-wave (CW) dipolar EPR (sensitive only to spin-spin distances <25 Å) was used to measure TOAC-TOAC distances within the TM dimers and revealed an ordered Gaussian distribution centered at 16 Å (full width half-maximum (FWHM) = 4 Å), corresponding to a closed state (Fig. 2 A). Double electron-electron resonance (DEER) (sensitive to spin-spin distances from 15 to 60 Å) also detected a short distance consistent with the dipolar EPR data, along with a longer, disordered component (32.9 Å, FWHM = 28 Å) (Fig. 2 B). Together, these measurements indicate the presence of a compact, ordered closed state and a broader, disordered open state. EPR on oriented membranes also indicated two structural states. Global fitting revealed two populations of spin-label tilt angles (orientation of the nitroxide principal axis relative to the membrane normal): a narrow conformation (24°, FWHM = 20°), and a disordered conformation (50°, FWHM = 48°) (Fig. 2 C). This bimodal orientational distribution (Fig. 2 C) is remarkably consistent with the bimodal distance distribution (Fig. 2 B).Open in a separate windowFigure 2EPR spectra (left) of 32-TOAC-DR5 in lipid, and resulting structural distributions (right). (A) CW dipolar EPR spectra (left) of dimer (1 mM diamide) and monomer (1 mM 2-mercaptoethanol). Best-fit spin-spin distance distribution was a single Gaussian centered at 16 ± 2 Å (right). (B) The DEER waveform (left) of 32-TOAC-DR5 dimer was best fit (right) to a two-Gaussian distribution. The short distance was constrained to agree with the CW data, because DEER has poor sensitivity for distances <20 Å. The long-distance distribution is centered at 32.9 Å and is much broader. (C) CW EPR spectra (left) of 32-TOAC-DR5, with the membrane-normal oriented parallel (red) and perpendicular (blue) to the field. Simultaneous (global) fitting of these spectra reveals narrow and broad components (right). (In panels B and C, the overall distribution is plotted as black, while the closed and open components are plotted as green and magenta, respectively.)We subsequently conducted a PMF calculation (10) using the DR5-L TM dimer starting configuration developed by our group previously (3), embedded in a DMPC bilayer, with the Leu-32/Leu-32 Cα distance as the reaction coordinate. Three calculations were run from independent starting configurations, each using 50 windows spaced in 0.5° increments, and run for 20 ns at each window (totaling 3 μs). Each of the calculations yielded a similar result, and the averaged free energy curve (Fig. 3 A) agrees remarkably well with our EPR measurements: a narrow distribution at the closed conformation (∼16 Å, Fig. 3 B) separated by an ∼3 kcal/mol energy barrier from a broad distribution of accessible open conformations at ∼27 Å, (Fig. 3 C). Each of the three individual PMF plots can be found in Fig. S1 in the Supporting Material.Open in a separate windowFigure 3(A) PMF calculation of the DR5 TM domain dimer along the Leu-32/Leu-32 distance reaction coordinate. The PMF calculation reveals a narrow closed state and a broader open state separated by a free energy barrier. Representative snapshots of the (B) closed state and (C) open state.In the closed state, the helices are tightly packed at the GxxxG interfacial motif and all the way down the juxtaposed helix faces at residues Ala-18, Leu-22, Ala-25, and Val-26. The tight packing is aided by kinking and twisting of the two helices around their common axis, increasing the interacting surface area. In the open conformations, the Ala-18, Leu-22, Ala-25, and Val-26 pairs are dissociated and, interestingly, the GxxxG motif at Gly-10 and Gly-14 remains tightly packed. The open state energy well is only slightly less favorable than the closed state (by ∼2 kcal/mol), and its free energy profile is relatively broad and flat. The increased crossing angle in the open state is facilitated by straightening of the helix kink and is not accommodated by a change in bilayer thickness (see Fig. S3, A and B).The observed change in helix-helix distance (11 Å between the two minima in the PMF) is extremely close to that observed previously in live-cell FRET studies of a constitutively active form of TNFR1 (∼8 Å change between states using large fluorescence probes at the cytosolic domains) (4). The change observed in the EPR data (17 Å) may be an overestimate because the measurement is made between TOAC spin labels that likely protrude from the two helices, depending on rotational orientation. These results collectively show that activation of these receptors requires a small, but clearly significant conformational opening of the TM domains. One important note is that our EPR experiments recapitulate the equilibrium distribution of the two states despite there being no driving force to traverse the barrier between them (∼3 kcal/mol in the closed-to-open transition and ∼1 kcal/mol in the open-to-closed transition, Fig. 3). We do not interpret the results to mean that the dimer necessarily traverses these barriers at 4°C. Rather, there likely exist multiple reaction paths for dimerization of the abstracted TM domains. Finally, in the context of the full-length receptor, how the ligand induces a conformational change capable of overcoming the closed-to-open barrier remains an important question.Whether the observed structural transition in the TM domain dimer of the long-isoform of DR5 is a ubiquitous conformational switch that acts over the entire TNFR superfamily remains unknown. Vilar et al. (11) first proposed a similar scissors-model for activation of p75 neurotrophin receptor, which has a cysteine at the center of its TM helix. The short isoform of DR5 lacks a TM domain cysteine, but does form noncovalent dimers in cells, with likely TM domain dimer contacts (3). Among the other closely related and structurally homologous members of the TNFR superfamily, TNFR1 contains a cysteine at the center of the TM domain, but lacks any discernible small residue motifs (e.g., GxxxG). TNFR2 lacks a TM cysteine on the extracellular side, but does have a GxxxG motif positioned similarly to that of DR5. On the other hand, Death Receptor 4, whose functional distinction from DR5 has remained somewhat elusive, lacks both a cysteine and any recognizable small-residue hydrophobic motif.In summary, we have extended recent findings that point to the TM domain of DR5 as an essential structural component in the conformational change associated with activation. Our findings that the DR5-L TM domain occupies distinct open and closed states, separated by a substantial energy barrier, points the way to further studies across the TNF-receptor superfamily.  相似文献   
88.
In surface electromyography (sEMG), the distribution of motor unit potential (MUP) velocities has been shown to reflect the proportion of faster and slower propagating MUPs. This study investigated whether the distribution of MUP velocities could distinguish between sprinters (n = 11) and endurance athletes (n = 12) in not-specifically trained muscle (biceps brachii) during prolonged dynamic exercises at low forces. sEMG was acquired during 4 min’ exercises: unloaded, 5%, 10% and 20% of maximal voluntary contraction (MVC). The features extracted from the sEMG were: the mean muscle conduction velocity – estimated using the inter-peak latency and cross-correlation methods, the within-subject skewness (expressing the proportions of faster and slower propagating MUPs) and the within-subject standard deviation of MUP velocities (SD-mup). Sprinters showed a greater proportion of faster propagating MUPs than endurance athletes. During fatigue, the SD-mup of sprinters broadened progressively, whereas that of endurance athletes did not. The findings suggest that sprinters conveyed a greater proportion of faster motor units than endurance athletes and that motor unit behavior during fatigue differed between groups. Thus, the distribution of MUP velocities enables distinction between a muscle of sprinters and endurance athletes during prolonged dynamic exercises at low forces.  相似文献   
89.
In surface electromyography (sEMG), the distribution of motor unit potential (MUP) velocities has been shown to reflect the proportion of faster and slower propagating MUPs. This study investigated whether the distribution of MUP velocities could distinguish between sprinters and endurance athletes in not-specifically trained muscle (biceps brachii). sEMG results were acquired from 15 sprinters and 18 endurance athletes during short static contractions (3.8 s) at three force levels: unloaded, 10% and 20% of maximum voluntary contraction. The features extracted from the sEMG were: the mean muscle conduction velocity (CV) – estimated using the inter-peak latency and the cross-correlation methods, the within-subject skewness of MUP velocities (expressing the relative proportions of faster and slower propagating MUPs), and the within-subject standard deviation of MUP velocities. Sprinters had a higher CV than endurance athletes using both methods. Sprinters also demonstrated a greater proportion of fast propagating MUPs, as indicated by the skewness. Thus, the distribution of MUP velocities was able to demonstrate physiological differences between sprinters and endurance athletes during short contractions at low forces. The findings can be extrapolated to the motor unit level. Since the investigated muscle was not involved in specific training, the differences seem to reflect inherited properties.  相似文献   
90.
Toxicity of human α-synuclein when expressed in simple organisms can be suppressed by overexpression of endoplasmic reticulum (ER)-to-Golgi transport machinery, suggesting that inhibition of constitutive secretion represents a fundamental cause of the toxicity. Whether similar inhibition in mammals represents a cause of familial Parkinson''s disease has not been established. We tested elements of this hypothesis by expressing human α-synuclein in mammalian kidney and neuroendocrine cells and assessing ER-to-Golgi transport. Overexpression of wild type or the familial disease-associated A53T mutant α-synuclein delayed transport by up to 50%; however, A53T inhibited more potently. The secretory delay occurred at low expression levels and was not accompanied by insoluble α-synuclein aggregates or mistargeting of transport machinery, suggesting a direct action of soluble α-synuclein on trafficking proteins. Co-overexpression of ER/Golgi arginine soluble N-ethylmaleimide-sensitive factor attachment protein receptors (R-SNAREs) specifically rescued transport, indicating that α-synuclein antagonizes SNARE function. Ykt6 reversed α-synuclein inhibition much more effectively than sec22b, suggesting a possible neuroprotective role for the enigmatic high expression of ykt6 in neurons. In in vitro reconstitutions, purified α-synuclein A53T protein specifically inhibited COPII vesicle docking and fusion at a pre-Golgi step. Finally, soluble α-synuclein A53T directly bound ER/Golgi SNAREs and inhibited SNARE complex assembly, providing a potential mechanism for toxic effects in the early secretory pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号